Model (UKCEH)
QUESTOR (Quality Evaluation and Simulation Tool for River Systems)
QUESTOR represents a river as a series of river reaches within which physical, chemical and biological processes operate.. The initial selection of reaches is based on the location of confluences, diffuse (catchment) sources, discharge points, abstraction points, monitoring sites, and weirs. Once this has been done, long reaches, say those greater than 10km, can be sub-divided. The flow and water quality out of a reach are calculated based on a mass balance of flows into the head of the reach plus contributions from point sources and diffuse sources minus abstractions. The determinands and processes modelled are not fixed within the QUESTOR modelling environment, but are tailored to the particular application. The QUESTOR model has sets of equations to simulates nitrogen and phosphorus species, pH and suspended sediment, the aspects of water quality of particular interest are those determinands indicative of the impacts on the river ecosystem, namely temperature, chlorophyll-a (Chl-a), BOD and DO. Chl-a is used as a surrogate for the algae using a fixed stoichiometry model whereby the ratio chl-a:C:N:P is 1:50:10:1. The growth of algae is limited by light, temperature and nutrient concentrations. The model was developed to help catchment managers assess the impact of their actions e.g. changing discharges consents, abstracting more water from a river or building a flood relief channel. The aim was to produce a physically realistic representation of a number of important measures of river water quality while being practical to run using generally available datasets.
QUESTOR is based on the earlier in-stream water quality models IHQM (Institute of Hydrology water Quality Model) and QUASAR (Quality Simulation Along Rivers). QUASAR was sold commercially for both VAX and PC systems, and is now available free of charge, but unsupported, as PC-QUASAR. The model formulation of the "basic" version of QUESTOR corresponds broadly with QUASAR.
QUESTOR is based on the earlier in-stream water quality models IHQM (Institute of Hydrology water Quality Model) and QUASAR (Quality Simulation Along Rivers). QUASAR was sold commercially for both VAX and PC systems, and is now available free of charge, but unsupported, as PC-QUASAR. The model formulation of the "basic" version of QUESTOR corresponds broadly with QUASAR.
- Version
- Version CWC
- Contact
- Mike Hutchins, Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, Tel: 01491 692478, email: mihu@ceh.ac.uk, http://www.ceh.ac.uk/staff/michael-hutchins
- Keywords
- License
- Executable is freely available. The code could be make available subject to a suitable license, but no support can be guaranteed.
- Operating Requirements
- Windows and Linux versions available.
- Application Type
- Provided as an Executable; Source code is Fortran
- User Interface
- Control Files, although a GUI exists of both Windows which helps the user with calibration.
- Support Available
- Model developer can give some very limited support.
- Application Scale
- catchment
- Geographical Restrictions
- Only tested in Temperate Climates
- Temporal Resolution
- Model operates at a daily time or hourly step, but can interpolate input data provided a coarser interval.
- Spatial Resolution
- Provides output by reach. Reach length is set by the user (typically 1000 – 5000 km depending on application and time step)
- Primary Purpose
- Simulate water quality in rivers especially eutrophication for scenario analysis
- Key Output Variables
- Stream N P species, Dissolved Oxygen, BOD, Algae (mixed species or individual), Macrophytes, Benthic Algae, Temperature
- Key Input Variables
- Flow and water quality data from upstream boundaries plus sewage treatment discharges and water abstractions volumes. Observed data for calibration.
- Calibration Required
- YES. Required optimization (manual) of model equation parameters values against observed data. Literature can provide suitable bounds to these parameters.
- Model Structure
- Dynamic, process-based, semi-empirical deterministic model (although there is a stochastic mode)
- Model Parameterisation
- Majority of key parameter values expert based or derived from observed data
- Input Data Available on CaMMP Catalogue
- Yes
Key References
- Boorman DB. LOIS in-stream water quality modelling. Part 1. Catchments and methods. The Science of The Total Environment 2003; 314-316: 379-95.
- Waylett AJ, Hutchins MG, Johnson AC, Bowes MJ, Loewenthal M. Physico-chemical factors alone cannot simulate phytoplankton behaviour in a lowland river. Journal of Hydrology 2013; 497: 223-33.
- Hutchins MG, Williams RJ, Prudhomme C, Bowes MJ, Brown HE, Waylett AJ, Loewenthal M. Projections of future deterioration in UK river quality are hampered by climatic uncertainty under extreme conditions. Hydrological Sciences Journal 2016; 61: 2818-33.
Input Data
- Flow data (m3/s) at daily time intervals, ASCII times series file of prescribed format
- Calibration Data. Flow (cumecs) and Water Quality (mg/L) at locations along the river – Any time step, ASCII data in prescribed format.
- Water Quality Data( mg/L), Daily time series (interpolated from routine data), ASCII times series file of prescribed format
- Solar Radiation Data (W/m2), Daily values, ASCII times series file of prescribed format
- Weirs, location (national grid reference), height (M), type (code) fixed in time
Output Data
- Flow (m3/s) and) at all specified reach boundaries, time series (daily), ASCII files
- Water Quality: N and P species concentrations (mg/L), Dissolved Oxygen (mg/l and % saturation), BOD (mg/L), Temperature (oC), Chlorophyl-a (mg/L), pH, Suspended sediment (mg/L), at all specified reach boundaries, time series (daily), ASCII files.
Quality Assurance
- Developer Testing
- Yes
- Internal Peer Review
- Yes
- External Peer Review
- Yes
- Use of Version Control
- Yes
- Internal Model Audit
- No
- External Model Audit
- Unknown
- Quality Assurance Guidelines and Checklists
- Unknown
- Governance
- Yes
- Transparency
- Yes
- Periodic Review
- Yes