Barnsley, S.B.; Lovett, A.A.; Dicks, L.V.

Multispectral airborne imagery and associated classifications, training data and validation data, for mapping nectar-rich floral resources for pollinators, Northamptonshire, UK 2020

Data presented here include imagery with ground-sampling distances of 3 cm and 7 cm for March 2019, May 2019 and July 2019. Also included are the corresponding ground-truth training and verification data presented as shapefiles, as well as the classification output and other data relevant to the project such as the width of floral units.

The imagery was acquired by Spectrum Aviation using A6D-100c (50mm) Hasselblad cameras with bayer filters, mounted on a Sky Arrow 650 manned aircraft. Ground-truth data for training maximum likelihood classifications and for verifying the accuracy of classifications were gathered within eight days of imagery acquisition. Ground-truth data were acquired from sown field margins and hedgerow surrounding one study field.

This dataset was acquired from March to July 2019 at a farm in Northamptonshire, UK. Data were acquired as part of a NERC funded iCASE PhD studentship (NERC grant NE/N014472/1) based at the University of East Anglia and in collaboration with Hutchinsons Ltd. The aim of the research was to map the floral units of five nectar-rich flowering plant species using very high resolution multispectral imagery. Each species constitutes an important food resource for pollinators. The plant species in question were Prunus spinosa, Crataegus monogyna, Silene dioica, Centaurea nigra and Rubus fruticosus.
Publication date: 2021-07-26